
N87-18858
ALTERNATIVE METHODS FOR CALCULATING SENSITIVITY

OF OPTIMIZED DESIGNS TO PROBLEM PARAMETERS

G. N. Vanderplaats

University of California

Santa Barbara, California

H. D. Cai

Engineering Design Optimization, Inc.

Santa Barbara, California

OUTLINE

Optimum sensitivity is defined as the derivative of the optimum design with

respect to some problem parameter, P. The problem parameter is usually fixed

during optimization, but may be changed later. Thus, we can use optimum sen-

sitivity to estimate the effect of changes in loads, materials or constraint

bounds on the design without expensive re-optimization.

Here, we will discuss the general topic of optimum sensitivity, identify

available methods, give examples, and identify the difficulties encountered in

calculating this information in nonlinear constrained optimization.
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THE NEED FOR OPTIMUM SENSITIVITY

In many situations, we not only want to find the optimum, but we also want to

know how sensitive the optimum is relative to a certain parameter (i.e. how

stable the optimum is).

When parameter P changes, optimum sensitivity can be used to estimate the

changes in the optimum design variables and objective function without expensive

re-optimization.

In multi-level optimization, we need the derivative of the lower level op-

timum with respect to the upper level design variables.

i. FIND THE CHANGE IN THE OPTIMUM DESIGN DUE TO CHANGES IN LOADS,

MATERIALS, OR OTHER DESIGN SPECIFICATIONS

2. AVOID RE-OPTIMIZATION

3. PROVIDE NEEDED INFORMATION FOR MULTI-LEVEL OPTIMIZATION
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THE DEFINITION OF OPTIMUM SENSITIVITY

The mathematical definition of optimum sensitivity is given here. What makes

this unique from what we usually define as sensitivity analysis is that there is

an implied inequality constrained sub-problem. Because of this, it is possible
that the optimum sensitivity may not be continuous at P = pO.

OPTIMUM SENSITIVITY

DF*/DP = LIMIT [F(X*+AX*,P+AP) - F(X*,P)]/AP
AP-->o

DX___*/DP= LIMIT [AX___*/AP]
Ap_

WHERE F(X*+AX,P+A_P) IS FOUND FROM;

MINIMIZE F(X,P+AP)

SUBJECT TO;

Gj(X,P+AF) < 0

L U
xI < xI _ xi

J=I,M

I=I,N

21



AVAILABLEMETHODS

Several methods have been proposed to estimate the optimum sensitivity of a
design with respect to parameter P. Each of these methods contains certain
assumptions, and these assumptions can be incorrect in somecases. The methods to
be discussed here are listed below.

i. BASEDONTHEKUHN-TUCKERNECESSARYCONDITIONSFORAN OPTIMUM

2. BASEDONTHECONCEPTOFA FEASIBLEDIRECTION

3. BASEDONA LINEARPROGRAMMINGMETHOD

4. BASEDONA FULLSECOND-ORDERAPPROXIMATION
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METHOD1

The assumption contained in this methodis that all of the constraints that
are critical at the optimumwill remain critical when P changes infinitesimally.

Differentiation of the Kuhn-Tucker conditions gives n equations.

The assumption gives another K equation, where K is the numberof critical
constraints at the optimum.

This method requires second-order information.

Because of the assumption that all critical constraints remain critical, this
method does not recognize the discontinuity which may exist in the optimum sen-
sitivity.

This method gives no assurance that the answer obtained is correct.

METHOD i: BASED ON THE KUHN-TUCKER CONDITIONS

AT XJ Gj(X*) = 0 J g K

JeK

THIS LEADS TO THE SOLUTION OF THE FOLLOWING SET OF EQUATIONS;

WHERE

AIK = _2F(X*)-- + I %J _2Gj(X--*)
SXI_X K _XI_X K

J _ K

WITH SIMILAR EXPRESSIONS FOR BIK , C I AND D I
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METHOD2

This method treats the parameter as a new design variable. This enlarges the
design space to n+l. The assumption contained in this method is that, in the ex-
panded design space, the maximumimprovement or minimumdegradation in the design
is sought.

This method seeks the constrained steepest descent direction in n+l space to
give DX*/DP, and from this DF*/DP is calculated directly.

This method requires only first-order sensitivity information.

This method accounts for possible discontinuity of the total derivative.

As with the first method, there is no assurance that the result obtained is

correct.

LINEAR METHOD BASED ON FEASIBLE DIRECTIONS

LINEAR APPROXIMATION: LET XN+ 1 = P

MINIMIZE F(X) = F(X*) + VF(X*)'_

SUBJECT TO;

Gj(X*) + VGj(X_*)'S <__0 JeK

WHERE

S BOUNDED

S I = X I - XI IS EQUIVALENT TO S I = _XI/_P

EQUIVALENT PROBLEM:

MINIMIZE VF (X*) •S

SUBJECT TO;

VGj(X_*)'S < 0

S'S<I

JeK
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METHOD2B

Two extended forms are available to deal with the possible discontinuity of
the optimum sensitivity. This is necessary because the direction in which P is
changedwill determine the value of the sensitivity. If the value is different,
depending on the sign of delta-P, then this indicates that the design will follow
one subset of constraints if P is increased but a different set if P is decreased.

This method for dealing with the potential discontinuities of the optimum
sensitivity is somewhatdependent on the choice of the parameter C. Numerical
difficulties can be encountered in deciding the correct value of C.

DEALING WITH DISCONTINUITY DEPENDENT ON THE SIGN OF P

AP>0

MINIMIZE VF(X*)'S- C'SN+ I

SUBJECT TO;

V_Gj(X;)'S <__0 J gK

S'S<I

AP<0

MINIMIZE VF(X*)'S + C'SN+1

SUBJECT TO;

VGj(X_*)'S <__0 J gK

s's<z
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METHOD3

Here, we create a Taylor series expansion for the objective function and the
critical constraints. Taking the limit as delta-P goes to zero and keeping the
lowest order terms only produces the optimum sensitivity according to the
original definition. This process requires that we pay close attention to whether
delta-P approaches zero from the positive or negative side.

This method requires solving two resultant LP problems.

This methodrequires first-order sensitivities only.

If the numberof the constraints is less than the numberof design variables,
the LP problems do not have a unique solution.

If a unique solution exists, it is always the correct solution.

LINEAR PROGRAMMING APPROACH

USING THE DEFINITION OF OPTIMUM SENSITIVITY;

MINIMIZE VF(X*)'_X + _F(X*)/_P'AP + 0(AX,AP)

SUBJECT TO;

Gj(X__*,P) + VGj(X__*)" f_K + _Gj/_P'AP + 0(AX,AP) <_ 0

KEEP THE LOWEST ORDER TERMS WHEN AP-_0.

IF AP -_ +0 (AP>O):

MINIMIZE VF(X*)'AX/DP + _F(X_*)/_P

SUBJECT TO;

VGj(X_*)'AX/DP + _Gj/_P ! 0

THIS LEADS TO;

JgK

IF AP -_ -0 (AP<0):

MINIMIZE VF (X*)" AX/DP - 3F (X__*)/De

SUBJECT TO;

VGj(X*)'AX/DP - _Gj/3P __ 0 JgK

J=I,M
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METHOD4

Just as with method i, this method requires second derivatives. However,
here the second-order information is used directly as an approximate optimization
task.

The parameter P maybe treated as an independent design variable, or the
change in P maybe specified.

If a small change in P is specified, the method becomesa finite difference
method. When delta-P goes to zero, this method gives the exact answer to a second
order approximation.

The set, K, of retained constraints can include all critical and near criti-
cal constraints, or even the entire set of constraints. Therefore, as P is
changed, a totally newset of constraints can becomecritical.

Within the limits of numerical precision, this method will always give the

correct solution. The disadvantage is that this problem has a quadratic objective

and constraints and so must be solved by nonlinear programming. It is, however,

quite efficient since it is an explicit problem.

If an attempt is made to simplify this method by linearizing it, the result

is the set of two LP problems given in method 3.

FULL SECOND-ORDER APPROXIMATION

SOLVE THE FOLLOWING EXPLICIT APPROXIMATE PROBLEM:

FIND THE CHANGE S THAT WILL

MINIMIZE F(X*,P) +VF(X*,P)'_ + 0.5STHF_

SUBJECT TO;

Gj(X_*,P) + VGj(X_*,F)'_ + 0.5sTHj_O J _ K

S BOUNDED
m
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ANOPTIMUMCURVE

WhenP changes, the optimum points X form a curve in n+l space. The optimum
sensitivity DX /_P is represented by the tangent of this curve. The curve can be
nonsmooth, so DX /DP can be discontinuous.

An infinitesimal change in P may cause the curve to leave a currently criti-

cal constraint. This demonstrates the potentially discontinuous nature of optimum

sensitivity.

P

×
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DISCONTINUOUSDERIVATIVES

This is another graphical example of the discontirmous derivative problem.
In this case, the constrained optimum is found for P=0 to lie on the constraint
boundary. Nowif P is increased, the optimumsensitivity will point to the uncon-
strained minimum. On the other hand, if P is decreased, the optimum sensitivity
follows the constraint. Since the total derivative is the scalar product of the
gradient of the objective function with the vector S, it is clear that the optimum
sensitivity is not continuous at X*.

P

/

/
/

/

/

• F:O

-2
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ROTATING SHAFT OPTIMIZATION

This example demonstrates the usefulness of optimum sensitivity as an en-

gineering approach to frequency domain avoidance. Assuming it is required that

the rotating shaft not vibrate in the domain between 2.8 and 3.5 Hz, the shaft is

first optimized with respect to all other constraints. Then the sensitivity with

respect to the fundamental frequency is calculated and a new optimum design is

projected with a frequency below 2.8 Hz and with a frequency above 3.5 Hz. From

this it appears that it is far more economical to drive the frequency up than to

drive it down. However, this was not known in advance and so it was not known

whether the frequency should be bounded from above or below. Thus, optimum sen-

sitivity provides one means of dealing with a problem in which the design space is

disjoint.

F> F f-_T

OBJECTIVE: MINIMUM WEIGHT. CONSTRAINTS: STRESS, DISPLACEMENT, EULER BUCKLING,

SHELL BUCKLING. PARAMETER P: THE FIRST NATURAL FREQUENCY.

THE OPTIMUM WITHOUT ANY FREQUENCY CONSTRAINTS: e I = 3.1, W* = 27,242

OPTIMUM SENSITIVITY

METHOD 2 METHOD 3 RE-OPTIMIZE

e I --<2.8

>- 3.5

W* +5,278 +5,278 +6,429

XI -1.65 -1.65 -1.72

X2 +0.33 +0.33 +0.44

W +417 +417 +169

X I +0.17 +0.17 +0.17

X2 -0.003 -0.003 -0.011
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10-BARTRUSS

Here the common10-bar truss was optimized and the sensitivity was calculated
with respect to the allowable stress in member9. It is known that the weight of
this structure can be reduced by increasing this allowable stress to a value of
37.5 ksi, but beyond that, no weight reduction is possible. At the initial
optimum, memberi0 was at its lower bound. Method 1 assumed, incorrectly, that it
would stay there, while method 2 recognized that this memberdimension should be
increased. Using method 3, the allowable stress in member9 was allowed to change
as an independent variable and this method projected that the optimum allowable
stress is 38.2 ksi, quite close to the actual value of 37.5 ksi. The case at the
bottom of the figure is for optimization at the 37.5 ksi value and shows the dis-
continuity of the optimum sensitivity.

360" ----->

f I00 K

i0

fl00 K

OBJECTIVE:MINIMUMWEIGHT. CONSTRAINTS:STRESS,MINIMUMGAGE.
PARAMETERP: STRESSLIMIT IN MEMBER9. INITIAL OPTIMUM09 = 30 KSI,

SENSITIVITY

CASEi: PARAMETER METHODi METHOD2 METHOD3

W* = 1545

DF*/DO9 -240.5 -238.4 -178.6

Sl0 0.00 0.17 0.16

o9 ...... 38.2

W_CASE2:09 =37.5 KSI, = 1498, METHOD2.

AO 9 0 DF*/DU 9 = 215.7 W*(35) = 1512

AO 9 0 DF*/DO 9 = 0.00

CALCULATED W*(35) = 1511
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CONCLUSIONS

Optimumsensitivity in linear programmingis a commonand widely used tool.
Research in optimum sensitivity for nonlinear problems has not been this success-
ful and it has been shownhere that none of the methods is completely
satisfactory. Methods 1-3 often do not provide the correct answer, while method 4
requires second-order information that may be costly to obtain, as well as the
nonlinear optimization of the approximating functions.

The reasons for these difficulties are now beginning to be understood. If
the optimum design is fully constrained and unique, the optimum sensitivity can be
reliably calculated, just as in linear programming. However, if the design is not
fully constrained (fewer active constraints than design variables), the optimum
sensitivity using first-order information will not be unique and second-order in-
formation is essential. Unfortunately, this is the usual case in engineering
design. The reason that first-order information is inadequate is that the higher
order terms cannot be ignored as delta-P goes to zero in the limit.

The need to calculate the optimum sensitivity is a clear one and often jus-
tifies considerable effort. It is this information that is needed to makemany
fundamental design decisions. Therefore, improved understanding of these concepts
is useful in the search to extract the maximuminformation from the optimization
process.

i.

.

.

.

IN GENERAL, THERE ARE SITUATIONS WHERE NONE OF THE AVAILABLE METHODS EXCEPT

THE FULL SECOND-ORDER APPROXIMATION WILL GIVE THE CORRECT ANSWER

ITERATIVE METHODS USING FIRST-AND SECOND-ORDER INFORMATION SHOULD BE
INVESTIGATED

IF SECOND-ORDER INFORMATION IS AVAILABLE, METHOD 4 WILL PROVIDE USEFUL

ENGINEERING WHICH ACCOUNTS FOR NEARBY CONSTRAINTS THAT MAY BECOME CRITICAL

WHEN PARAMETER P IS CHANGED

FURTHER RESEARCH IS NEEDED; THE USEFULNESS OF OPTIMUM SENSITIVITY HAS BEEN

CLEARLY SHOWN IN PAST WORK
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